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Effect of angular momentum conservation in the phase transitions of collapsing systems

Victor Laliena
Hahn-Meitner Institut, Glienickerstrasse 100, D-14109 Berlin, Germany
(Received 2 July 1998

The effect of angular momentum conservation within microcanonical thermodynamics is considered. This is
relevant in self-gravitating systems, where angular momentum is conserved and the collapsing nature of the
forces makes the microcanonical ensemble the proper statistical description of the physical processes. The
microcanonical distribution function with nonvanishing angular momentum is obtained as a function of the
coordinates of the particles. As an example, a simple model, introduced by Thirring lori@.algbys.235
339(1970], is worked out. The phase diagram contains three phases: For low values of the angular momentum
L the system behaves as the original model, showing a complete collapse at low energies and a convex intruder
in the entropy. For intermediate valueslothe collapse at low energies is not complete, and the entropy still
has a convex intruder. For largethere is neither collapse nor anomalies in the thermodynamical quantities. A
short discussion of the extension of these results to more realistic situations is given.
[S1063-651%99)08103-9

PACS numbegps): 05.20-y, 05.90+m, 05.70.Fh

I. INTRODUCTION It is well known that, as a consequence of the virial theo-
rem, self-gravitating systems have a negative specific heat
Conventional thermodynamics applies to systems whost9,10l. In fact, the common feature of all these systems
forces have saturation property, i.e., the minimum of the poseems to be the appearance of an interval of energies where
tential energy of large systems is proportional to the numbethe microcanonical specific heat is negatj¥e5,7. This is
of particles. If this is the case, macroscopic parts have nedh€ transition region between the HP and CP.
ligible interactions and then the macroscopically conserved A negative specific heat may also be observed in systems
quantities are extensive, the thermodynamic potentials argith & finite number of degrees of freeddisee Ref[11)),
g)_uthforhstabledsystemsi I\_/ar_1t I—:gve sttheor[éttﬁf]_ stgteslthat, _
oo > n the thermodynamical limit, the entropy at fixed volume is
s e b s n e Femehranial i e P s,
. ) ) . ; " specific heat cannot be negative. However, the thermody-
For a system oN classical particles interacting via a two

. b " namical limit does not exist for unstable systems, and van
body potential¢(r) the stability condition states that t_here Hove’s theorem does not apply. Indeed, as mentioned above,
must exist a positive constaBt, such that, for each configu-

! o SU 1 19! it has been observed that the microcanonical specific heat
ration{ry, ... ry}, the following inequality is obeyefil]: remains negative in an energy interval after increasing the
number of particle$4—8]. Since the canonical specific heat
is always positive, both ensembles cannot be equivalent. It
D(ry, ... =32 S(ri—rj))=—NE,. (1) has been argued that the statistical formalism appropriate for
1) astrophysical systems is given by the microcanonical en-
semble[9].
This condition is realized in very specific situations. For in-  Microcanonical thermodynamics has been recognized as
stance, Eq(1) holds for potentials repulsive enough at shortespecially useful for a statistical description of systems
distances, and decaying faster tharP1at long distancesl} which suffer fragmentation and clusterifgl], since there
is the dimensionality of the spaceThe Lennard-Jones po- seems to be a problem in describing spatial inhomogeneities
tential is an example. Systems with purely attractive potenwithin the canonical ensemble. These phenomena, fragmen-
tials are always unstable, even if the forces are short rangethtion and clustering, appear in many different branches of
such as those studied in Refg,3]. Owing to the long range physics, from nuclear physid¢4d3] and atomic clustergl4]
of the potential, self-gravitating systems are unstable, even to astrophysic$15]. The task of microcanonical thermody-
the short distance singularity is removed by considering parnamics is to compute the entropy of a given system as a
ticles endowed with a hard core. When the stability conditionfunction of the macroscopicallfadditive conserved quanti-
does not hold, the system undergoes a phase transition froties. It is intuitively clear that the entropy of a system which
a high energy homogeneous ph@d®) to a collapsing phase undergoes a phase transition associated with spatial inhomo-
(CP) at low energie$4—8|. Recently, it has been discovered geneities, like clustering or collapsing, will depend crucially
[7,8] that there is a dynamical characterization of the twoon the value of the total angular momentuiBee Ref[16]
phases: the single-particle motion is superdiffusive in the CPfor a similar discussion in a different contéxindeed, angu-
and ballistic in the HP. The low energy regime is not alar momentum induces a repulsive centrifugal pseudopoten-
proper thermodynamical phase, since it is not homogeneousal, which competes with the attractive potential, and which
Nevertheless, we shall use the term ‘“collapsing phase’is able to modify the transition from the HP to the CP. An-
throughout this paper. gular momentum is of particular importance in astrophysics:
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the formation of a single star or a binary system, the birth of Il. MICROCANONICAL DISTRIBUTION
a solar system around a star, or the merger of galaxies in

clusters are, to a large extent, determined by the value of thﬁorﬁ:sogf’édei:/snsgsfg]m? Cé?:ﬁlfglepnaéglejewgﬁ(jﬁ] mf)erflac_
angular momentum. 9 Yy p y dep g only

A system of classical gravitating particles interacting via®" the position of the particles. The Hamiltonian reads

the Newton potential has an infinite entropy, due to the sin- N p?
gularities at both short and long distan¢és It is clear that H:E _'+q)(r1, C TN 2
the short distance singularity is not physical, since new =1 2m;

physics—like qguantum mechanics—appears at small scales;

hence there should exist a natural short distance cutoff. Th% the system is |s_olated,_and _the potential energy is transla-
tionally and rotationally invariant, the energy, momentum,

long distance singularity has a different nature. In principle, d | i il b d A ist
one is tempted to say that gravity should be able to bind th§NC anguiar momentum witl be conserved. As a consistency

system. A little thought, however, easily convinces one thatfo?f'“\%}i;het (I:enterfof rr?arssl:itwn\leOVﬁ )[N'It(h &Ccintstﬂi]:‘ Vaer-
at least from a statistical point of view, the system “prefers” ocity. outioss ot generaiity, we can lake the total fine

to evaporate rather than to remain bound. A tithe long momentum to be zero, and then the center of mass is fixed,

- : : or instance, at the origin of the coordinates. Assuming some
distance cutoffis necessary to keep the system confined, bug; o . R .
4 Y P Y ! %\‘nd of ergodicity, the statistical distribution will be flat on

no such box appears in nature. We have to consider it as vailable ph hell. The entrépie defined
artifact, making a statistical description possible. This is only e available phase space shell. The entrGpis define
hrough the Boltzmann formula

sensible if the evaporation rate is small. The box breaké
translational invariance, and therefore linear momentum is S(E,L,N)=InW(E,L,N), 3)
not conserved. Since we are interested in keeping the angular
momentum conserved, we must deal with spherical boxes iwhereE is the total energy and the magnitude of the an-
order to maintain the rotational symmetry exactly. gular momentum. By symmetry, the entropy must be inde-
The paper is organized as follows: in Sec. Il we computependent of thel direction. W is the volume of the phase
the microcanonical distribution with conserved angular mo-space shell defined by the orbits with givErandL. Notice
mentum by integrating out the momenta in phase space. Thiat the Boltzmann constant is set equal to unity and the
resulting formula yields a microcanonical weight suitable forentropy is dimensionless; hence the temperature is measured
Monte Carlo simulations, and also allows an analytical apin units of energy.
proach based on mean field methods. In Sec. Il we briefly To avoid overly cumbersome expressions, let us consider
derive the equations for the mean field approach. Section I\the case in which only the angular momentum is conserved.
is devoted to a discussion of a simple model, introduced byf the linear momentum is also conserved, the derivation of
Thirring [4], which mimics the main features of self- the microcanonical distribution is similar, and the result will
gravitating systems fairly well. The model is extended tobe reported at the end of this section. The volume of the
take into account the conservation of angular momentunrelevant phase space shell can be computed starting from its
The paper ends with a summary of the conclusions in Sec. \WWefinition:

N
1 d3rid3pi
W(E,L,N)—mj (_H ——

i=1

: 4

5(E—H)5<3)(L—Z rXp

After integrating out they's, we obtain a nonsingular microcanonical distribution depending only on the spatial configuration

{ry, ....r\}- In order to perform the integration ovprin Eqg. (4) easily, let us define
N p2
H(E,L,N,{r}>=f [] d3pi5(E—E ﬁ)w(L—E xpil, ®
i=1 i i i
where we have used the notatigr E—®(rq, ... ry\). Itis convenient to take the Laplace transformlbfrespect toE,
ﬁ(s,L,N,{r})=f dEeSEII(E,L,N,{r}), 6)
0
where Res>0. Introducing the following representation for the remaining Difaftinction,
* dw
8(x) = f 5% )
27T

we obtain
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3 N

2
ﬁ(s,L,N,{r})zf(;j (;)aexp(iw-L) .H d3piex;{—s§i: %—i > w-(rXp) |. (8

o =1 i

The integral ovep is now Gaussian, and can be readily performed. What remains is again a Gaussian integasl aser
before, there is no difficulty in evaluating it. After some algebra, it is found that

—s12LT 1L

ﬁ(s,L,N,{r}):C(detl)’WW, (9)

whereLTI7*L=33,_1L,1,5L, the matrixl is the moment of inertia tensor respect to the origin,

N
|aﬁ=21 mi(r28,5—rerf), (10)

a,8=1,2,3 label the coordinates, af= (27)CN~32[;m¥? is a constant.
The inverse Laplace transform of E@) can be found in any book of integral transform tatll&3g]. It is

b 0 if 0<E<b
e
—— 1 by -1 if B 11
s F(v)(E_ ) if E>b.
Therefore,
=3 C —1/2/F_ 11 Ty—1; \(3N=5)/2
H(E,L,N,{I’})Zw(deﬂ) (E=3L'I""L) (12
F( 2 )
if E>3LTI"1L, and it vanishes otherwise.
After integrating out the's, the volume of the phase space is given by
Noder) 1
=C T (L1 T-1 _ ) (3N-5)2
W(E,L,N) Cf(iljl 27771)\/@(E LT L—D) , (13

whereC=C/[N!T((3N—3)/2)]. The domain of integration Eq. (10) holds. A Diracé function §&)(=m;r;) must be in-

in Eq. (13) is restricted to the subset of the configurationserted into Eq(13) in order to keep the center of mass fixed.

space where the integrand is positive. The thermodynamicdlotice that, if the number of particles is large, momentum

guantities can be computed numerically from the above inconservation gives negligible differences.

tegral by using a suitable Monte Carlo algorithm. Equation If the particles have some internal spin, the intrinsic mo-

(13) can also be used to derive microcanonical equations iment of inertia of each particle must be added to the orbital

mean field approximations. moment of inertia, and the exponent on the _right-hand side of

If the linear momentum is also conserved, a similar ex-Ed. (13) must be properly modified to take into account the

pression holds. Only the exponent in H43) must be re- number of intrinsic degrees of freedom. The derivation of a

placed by (N—8)/2, the constan€ by microcanonical weight for these more general cases is iden-
tical to that outlined in this section, and presents no addi-
tional difficulty. As a last remark, we stress that the results of

- —312 this section, namely, Eq13), apply to stable as well as to
C=(2m)®N 6)/2(2 mi) H m”, (14 unstable systems.

and the argument of thE function appearing ir€ by (3N Il MEAN FIELD THEORY

—6)/2. In this case, the moment of inertia tensaefers to If the number of particledN is very large, one can expect
the center of mass, which can be taken at the origin, and thethat the force a particle undergoes will be more sensitive to
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the mean particle distribution than to the fluctuations aroundor any i, we divide the integration region i cells of

it. Then one might think that the thermodynamics dependsolume a®. The integral oved®r; becomes a sum over all

on the mean particle density alone. In this section, we shalpossible cells. We hav8l such sums, one for eadh For

give a derivation of the mean field equations using this hy-each configuratiodr} we can define a function(l), with
pothesigcf. Ref.[18]). For reasons which will become clear =1, ... ,A, which counts the number of particles in tith

in the following, the results of this section apply only to cell. It is not difficult to see that the initial sum over the
unstable systems. position of the particles can be reorganized as a sum over the

Let us start with Eq(13). To perform the integral over number of particles inside each cell, as follows:

. A NI 1
W(E,L,N)=A > ... X . 5( > n(I)—N) n \/d (E—LLTI-1L—@)BN-572 (15)
etl

n(1)=0 n(A)= =1
IT na'y
I'=1

where A is a constant which containg, the elementary phase space volumes2 and the volume of the cel®. The
combinatorial factor is the number of configurations of particle positions which give the same occupation distfi@dipn
Introducing the particle density(r;) =n(l)/(Na®), wherer, denotes the position of the center of tiie cell, we can write Eq.
(15) as the following functional integral:

W(E,L,N):j [dp]ﬁ(der p(n—1 expl’N[—J d3r p(r)[lnp(r)—1]+§ln(E—%LTI1L—CI>)“, (16)

where we have ignored some irrelevant constants and ag—0 andN—o. This is the rigorous order of the limits,
proximated the factorials by their asymptotic form, since wesince the discretization must be removed first in order to
considerN large. We have also neglected the factafet!, obtain the originaW(E,L,N). Afterwards, the number of
which is of order 1IN with respect to the leading term. Now particles can be set to infinity with the above prescription for
we have to clarify how the argument of the logarithm scaleghe scaling. For unstable systems, mean field theory consists
with N. The usual thermodynamical limit is reached by tak-of interchanging both limits, first takin— . In this case,

ing N—<, keepingN/V,E/N, andL/N constant. The en- the functional integra(16) is dominated by the maximum of
tropy per particle thus has a well defined limit, if the poten-the exponent of the integrand. All the fluctuations around the
tial is stable. However, this limit does not exist for systemsmaximizing density are suppressed by powers bff. Where-
whose dynamics are governed by unstable potentials. Nevefere, all correlations are neglected and the mean field results
theless, in these cases we can still thke «, by letting the  are recovered. These are exact if Mianda limits commute.
masses and the coupling constants in the potential energhhis offers an explanation for the well known fact that the
simultaneously go to zero in such a way tiNin=M and  physics of many systems with long range interactions is ex-
N2¢(r,r') are kept constant. The ener@y the volumeV,  actly described by mean field theory. For stable systems, the
and the angular momentumare not scaled. The thermody- scaling in the thermodynamical limit is different, and the
namical functions depend on the total energy, instead of oabove arguments do not apply. Ignoring all the irrelevant
the energy per particle. However, as can be seen from Egonstants, the entropy per particle can be defined as

(16), the entropy scales with. This scaling, which applies

naturally to unstable systems, is the one we will consider in o_ _ 3 _ 3 LT -1y

this paper. This is not a thermodynamical limit, but a con- S J dr p(Olinp( =11+ InE-3 L1 L=P),
tinuous limit. It is sometimes called the Vlasov limit in the (18
Ilte_:_ahtgr%ii(taigg;Ilnztr?gc(:gl?r]]).Eq. (16) depend onp(r)) Wherel -andCI> are given by. Eq(l?). The equilibrium den-
through a suitable discretization. For very lafgeand very sity p is that which maximizesS under the constraint

Jp(n=1.
smalla, they can be expressed as The particle density which maximizes Ed.8) must have

a principal axis of the moment of inertia tensor along the
Iaﬁ[p]:Mf d3r p(r)(rzgaﬁ_rarﬁ)r angular momentum direction. Otherwise, it would be pos-

sible to define a new density by rotating the given one, in
such a way that the principal axis with larger moment of
inertia coincided with the angular momentum direction. The
potential energy® and the pure entropical terfip(Inp
—1) would not change, but the rotational energy would be
The functional integral16) is defined by the previous dis- lowered, thus increasing. Taking the angular momentum
cretization. There are two limits to be considered in @6):  along thez axis, we can write

¢[p]=f d®r d3" g(r,r)p(r)p(r’). 7
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Sz—j d3r p(N[Inp(r)—1]+3In| E- o ® and no qualitative difference is expecteth this case, the
8 (199  factor 3 which appears in front of in Eq. (20) must be
replaced by 1. Let us introduce the following notati®and

The constrained maximum can be obtained from the funcR,, respectively, are the radii of the total volurkleand the

tional derivative with respect tp. This gives the integral coreV,, and k=V/V. Using the dimensionless variables

L2 ) it in three dimensions, but it is slightly more cumbersome,

equation e=E/(GM?) and Q=L%/(2GM3R?), the mean field equa-
3 tion (20) becomes
p(r)=e><p[§B §(X2+y2)—J a3’ g(r,r') p(r’)}w : explpu+ Ba+ BErAR? if <R, ,
20 PI= expt ot Ber 2R it >Ry (2
where u is the Lagrange multiplier for the constraifip  where
=1, and we have used the notation
Q a?\ 7t
( L2 )1 ML? B= 6_1—+7 :
=|E-—5—— and {= —. 21
B 2l 33 ¢ 213, @) Ef d?rr2p(r)
IV. THIRRING MODEL WITH ANGULAR MOMENTUM Q
Long ago, Thirring proposed a very simple model for a €= 1 2 (26
star[4]. In spite of its extreme simplicity, it mimics the main _2f d?rr? p(r)
features of self-gravitating systems with surprisingly good R
success(About the relevance of the Thirring model in astro- he t i ist i
physics, and its comparison with more realistic models, seg € two seli-consistency equations
[9] and references therejnThirring considered the model
without angular momentum. In this section, we shall see that, a=| d’p(r), 1- azf d?r p(r) (27)
as expected, angular momentum substantially changes the Vo ViVo

behavior of the system. determinea and w. From them, it is straightforward to de-

rive the following equation fow:
A. Model

The model can be described as follows: a seiNgbar- 1—e Béx
ticles is confined to a spherical volure Inside this volume M@~ In(1—a) = Ba=—BE(1—x)+In m) -
there is a spherical interaction regi¢eore V,, concentric (28)
with V. Particles outside the corg'atmosphere’) do not
interact, and two particles inside the core have a constarNotice thatg is positive by definition. It is possible to elimi-

attractive potential energy. Using the step function nateu from (25), so that the particle distribution becomes
1 if re VO 2
Q — CYFO r .
Vo(r)_ 0 if r¢V0| (22) Tex;{ _ﬁ§§> if rEVO
. . . = 29
the interaction energy can be written as p(n) (1- a)F, r2\ 9
————exp —BE—]| if reVy,
Gm? v R?
B(r,r')==—5=0y(NOy(r), (23
where
wherem is the mass of a particle ar@ the “gravitational”
constant(We have chosen the coupling constant in analogy Fo= B¢ and F,= B¢ _ (30)
with a self-gravitating systemWe can carry out thél— oo efér—1 eft— ehtx
limit of Sec. Ill, with Nm=M fixed. Then the potential
energy becomes Equation(28) provides the complete solution for the system.
Once we obtairw, for different values of the energy and
B GM? ) the angular momenturf), we can compute the entropy
Py, o) =———a, (24 and the temperatur®. Owing to the fact that the mass dis-

tribution maximizesS, we have

1 a4Sp.€]
?_ Je =p

wherea=f\,0 d®r p(r) is the fraction of particles insid¥,.

(31
B. Mean field equations

To simplify the computations, we shall consider the Notice thata is an order parameter for the collapsing phase
model in two dimensionglt should not be difficult to solve transition, since it is the fraction of particles inside the core
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FIG. 1. The structure of the ground state as a functiof)dbr (a) K<% (observe the logarithmic scale in abscigsasd (b) K>%.

V. Notice also that Eq(28) can have more than one solu- each fixeda, take a mass distribution which maximizes the
tion for some values oé and(). When this is the case, the moment of inertia. Obviously, this mass distribution corre-
true solution is that which maximizes the entropy. The othersponds to a fractior of the particles in the outer layer of the

constitute metastable state®)]. core and the remaining-1« fraction in the outer layer of the
system. The dimensionless moment of inertia is then
C. Limiting cases (1/R?) [d?rr? p(r)=1— a(1— «); hence the nonthermal en-
Let us study the solutions of E@28) in some limiting €9y 1S
cases. 5
(@ If Q—0, then ¢—0, and we recover the original . = Q o (33)
Thirring model. There is a phase transition separating a low "l-a(l-k) 2°
energy CP, wherex~1, from a high energy HP, withy
~K. The absolute minimum of the above function fek[0,1]
(b) If Q—o0, thené—ce. In this casea—0 for e~4()  gives the equilibrium particle distribution in the ground state
and a— « for e>4(). No collapse happens. as a function of) and the parametet. Details are found in

(c) For fixed values of) ande—c, we have—0, and  the Appendix, where it is shown that the behavior of the
then a—K. In th(_e high energy region, the system behaves aground state depends anin the following way.

a gas, irrespective of the angular momentum, and the mass (a) k<3 (atmosphere larger than the cpr€here are two
distribution is homogeneous. critical values of the angular momenturft; = x%/(1— k)

(d) The most interesting case is the behavior of the grounéndQ,=1[8(1- «)?]. ForQ <, the ground state is char-
state for fixed values of). The ground state is the macro- acterized by a complete collapse with all the particles inside
scopic state described by the microstates on the phase spage core @=1). For Q,<Q<Q, there is an incomplete
shell with minimal energy for fixed angular momentum. It collapse with most, but not all, the particles in the core. The
corresponds to zero temperature, since the energy of the syBaction of particles inside the core varies continuously from
tem is saturated by the rotational energyhich cannot be 4=1 at Q; to a=1[2(1—«)] at Q,. For Q>Q, the
zero due to the angular momentuend the potential energy ground state has an empty core=t0). Notice the jump of
in such a way that no energy remains for thermal motiony at (), .

This clearly impliesp—. As can easily be seen, the en-  (p) x>1 (atmosphere smaller than the corEhere is one
tropy goes to—< as—In g; hence, at zero temperature, the critical value of the angular momentumQ ;= «/[2(1
nonthermal(rotational plus potentialenergy must be at its — )], The ground state fof2<Qj is characterized by a
minimum. Otherwise, the system can change its mass distrtomplete collapse with all the particles inside the core. For
bution in such a way that some amount of thermal energy) > (), no collapse happensy&0).

1/B appears, increasing the entropy. In Sec. IVD, we shall  Figure 1 displays the behavior of the ground state as a
see what the structure of the ground state is for differenfynction of Q for the casesc< 1/2 andx> 1.

values of(}.

D. Ground state E. Phase diagram

For the discussion of the model at finite temperatures, we

As we have just discussed, whih-c, the nonthermal consider the most interesting cages 1/2 (atmosphere larger

energy than the corg The numerical solutions displayed in the fig-
O o2 ures are fork=1/(e3—1)~0.0524. Exactly as for the
€= - (32 ground state, there are three different phases, which can be
5 o 2 distinguished by the behavior of the order parameteFig-
Qf drr=p(r) ure 2 displaysy as a function of energy for three values(df

corresponding to each phase. Figures 3 and 4 show the tem-
must be at its minimum. It is possible to minimize the rota-perature and the entropy for the same value® ofThe cor-
tional energy without modifying the potential energy: for relation between the collapsing transition and the anomalies
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FIG. 2. The collapsing order parametervs the energy fof) FIG. 4. The entropy vs the energy for three value$)gfcorre-
values corresponding to each of the three phases. To facilitate Condponding to each phase of the system. The convex intruder for the
parisons, we have shifted the energy such that the minimum energyyo smallerQ can be seen. Fd2=0.15 the entropy is concave.
is e=0 for all Q).

in the th ical ities is clearl iS a crossover at a certain energy: the stable solution moves
in the thermodynamical quantities is clearly seen. We now,om gne branch to another. This is the origin of the jumps in
discuss in detall Wha,t is happening in each phase. .« and inT that can be seen in Figs. 2 and 2€0.05 in

(1) 2<Q,. There is a complete collapse at low energiesege piots Notice that the jump occurs after a region with
with a~1. The HP is separated from the CP by an interval,o4tive specific heat. For larg@r, the jump appears before
of energies with negative specific heat. Qualitatively, theye’specific heat becomes negative; however, even though in
model is similar to the original@=0) Thirring model. The  yhe |ast cases the specific heat is positive everywhere, the
entropy shows the characteristic convex intruder in the engniqny has still a convex intruder, due to the kink originated
ergy interval where the two phases coexidtotice that, by the jump in the temperature.

since the system is not thermodynamically stable, van (3) O>0,. There is no collapse at low energies. The

Hove's theorenj12] does not apply _ specific heat is positive, smooth, and increases monotoni-
(2) 2, <Q<0Q,. Atlow energies the collapse is not COM- ¢4y with the energy. The entropy has no convex intruder.
plete, with @<1. For values of) near{), the thermody- The above discussion demonstrates the correlation be-

namical quantities are qualitatively equal to those in the lowyeen the collapsing phase transition and the anomalies of
angular momentum phaseegative specific heatWhen{)  he caloric curve T versuse), and in the entropy. The phase

is larger, Eq(28) hqs more than one sollutlon In Some energygiagram in the planee Q) is displayed in Fig. 5. Obviously,
interval. The solutions form three continuous branches. Th‘?nere is a forbidden region, since a minimal rotational energy

stable state is determined by the solution with the largesg reqyired to keep angular momentum constant. The bound-
entropy. The other solutions are metastable s{@@ls There

03

T Q

02

Gas

4 -

01

Condensed
Transition

O L 1 L 1 h
105 203 Zo4 X 03 0.5 €

FIG. 5. The phase diagram of the model. Notice the logarithmic
FIG. 3. The microcanonical temperature vs the energy for threecale in the ordinate axis. The thick line corresponds toTtke)
values of(), corresponding to each phase of the system. isotherm.
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ary between the forbidden and allowed regions is Te0 More complicated regimes, like multifragmentation, could
isotherm. Inside the allowed region, there are two phaseslso be present as metastap®®)], or perhaps truly stable,
separated by a transition region, which is defined through thstates.

Maxwell construction(The two CP’s,()<(); and ;<)

<(),, are distinguished only by the behavior of the order V. CONCLUSIONS

parameter at low energies. The thermodynamical quantities, Let us briefly summarize the results presented in this

d distinquish th | ) o th Svork. First, we found a nonsingular expression for the mi-
we do not distinguish the two low energy regimes in the .., angnjcal distribution of systems with conserved, nonva-
phase diagramSince both phases are qualitatively different, nishing angular momentum. It was obtained by integrating

they must be analytically separated. This means that the tragy, the momenta in phase space, and it is suitable for Monte
sition must end at zero temperatufiee., on the curve of  carlo simulations as well as for mean field computations.
minimal energy. The transition region shrinks @ in- e presented a derivation of the mean field equations for
creases, and disappears(a{={1, on the zero temperature systems of classical particles interacting via a two body un-
line. stable potential, taking into account angular momentum con-
For fixed ), the difference of the energies limiting the servation.
transition region defines a “latent heat.” We see that the As an example, we discussed the properties of the phase
phase transition is first order everywhere, with non-vanishingliagram of a simple model of self-gravitating particles, in-
latent heat. From the analysis of E@8) when 83—~ and cluding conservation of angular momentum. We found the
0 —Q,, one concludes that the latent heat vanishe§ @s exact solution in the mean field approach, which served to
—Q. A careful study of the possible solutions, their entro-illustrate how the phase diagram of a physical system can be
pies, etc., which is not reported here in detail, leads to thisnodified by the conservation of angular momentum. In this
conclusion. Therefore, at the critical poifit,, the latent simple model, the angular momentun Q@ leads to the
heat disappears. Since the specific heat is continuous at thixistence of three phases, separated by two critical vélyes
point, we cannot say that the phase transition becomes seand (),. At low energies, all particles condense in a small

ond order; indeed, the order parametejumps at(),. region if Q<Q,. ForQ,;<Q<Q,, the collapse at low en-
ergy is incomplete, with most —but not all— particles con-
F. Discussion densed in a small region. At high energies, the system be-

. haves like a gas, irrespective of the value @f The
We now want to address the question of whether thetransition from the HP to the CP is accompanied by an

phgse d_lagram described in Sec_:. IVE shares its main pr()pa'nomaly in the caloric curvel(versuse), which reflects the
erties with those of more realistic models, or whether thes(1=,alct that the entropy is not concave in an energy interval

are merely a consequence of the extreme simplicity of th his interval coincides with that where the homogeneous-
model. We can give at least a partial answer. The mode ollapse transition takes place. Through the Maxwell con-

fﬁ:s'gﬁirgzshi;en"Z‘)#lmi‘gl“zt'(;gﬁ'n;yfi?(igafesﬁoorf tr_}ié?gftc;heasaruction, it is possible to define this transition region and a
therg is no place forymore pcom licated re ?mes. like rnulti_Iatent heat, which shows that the transition can be classified
fra mentatiopn P 9 as first order. The latent heat disappears continuousfy at
9 ' . =), andT=0. This reflects the fact that both phases, being
At low angular momentum, the CP, with all —or most— . ; : .
. : . X ... _qualitatively different, cannot be analytically connected in
of the particles forming a cluster, will be present in realistic . . .
X . . .the phase diagram. AR >(), there is neither collapse nor
problems. Of course, the size of the cluster will increase with ; . .
i anomaly in the thermodynamical quantities. The fact that the
angular momentum, because of the centrifugal pseudopoten- . : . .
. : . : anomalies of the thermodynamical quantities disappear at
tial. For large energies, both the potential and rotational en;

ergy are negligible and we shall have a HP. There will thenIarge angular momentum, when the collapse disappears, un-

be a transition region separating the two phases, as in Fig. gmblguqusly supports the close link between the_se two phe-
nomena: collapse and thermodynamical anomalies.

However, in realistic cases, we do not expect the CP to dis- . L .
We argued that, with more realistic potentials, the phase
appear for large angular momentum. Instead, a CP phas - . . g
) ; Co jagram will likely be richer. In particular, the CP will be
with two or more clusters will appear. This is intuitively .
. : : resent for large angular momentum, the collapse taking
clear, since the ground state will contain one cluster for lo . . .
: lace into two clusters. There remain many open questions,
angular momentum and two clusters if the system rotateg_ . . o )
. . . ._for instance: do several transitions appear, with the system
faster. This property of the ground state with non-vanishin X ; ST
) e uccessively collapsing first into two or more clusters and
angular momentum can easily be verified in the Hertel- . . )
2 A S - subsequently into a single one? Is there any room for multi-
Thirring model[5], which is a generalization of the Thirring : . .
X A fragmentation regimes, either as metastable or perhaps as
model that allows the particles to condense in different cells, ; L
; . Stable states? It is the opinion of the author that all of these
The center of mass of the system must be held fixed, as is the "~ - . :
o . - uestions deserve an answer through extensive studies.
case in isolated systems with negligible effects of the wal
(self-gravitating systems, for instanc@ he size of the low
energy region, where the CP appears, will shrink if angular ACKNOWLEDGMENTS
momentum increases, and will certainly become zero when
the system rotates infinitely fast. We expect a richer phase | am grateful to D.H.E. Gross for bringing the problem of
diagram, possibly with successive collapsing transitions, firsangular momentum in microcanonical thermodynamics and

into two (or more clusters and afterwards into a single one.self-gravitating systems to my attention. | acknowledge valu-
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APPENDIX

In this appendix we study in detail the minima of the

nonthermal energysee Sec. IV D

Q o?
T1-a(l-x) 2°
The absolute minimum of the above function[id,1] is ei-
ther ata=0,a=1, or at one solution of

_ QA=
l-al-n0P

(A1)

€nt

(A2)

Equation(A2) is equivalent to a real polynomial equation of
third degree, and therefore has either one or three real solu-

tions. Since the first term in EqA2) has a pole atw
=1/(1- k)>1, there is always a solution at>1/(1— «),
which is nonphysical since must belong tqd 0,1]. Besides
this nonphysical solution, EqA2) has two more solutions
when ) is small. ForQ)<1,

Amax=Q(1— k), amin%%(l_\/ﬂ(l—K)).
(A3)

From the second derivative of EGQA2), we see that there is
an inflection point at

3

1-YQ(1-«)?

1-« '
so thata ., COrresponds to a local maximum, aag,, to a
local minimum. We always have .= aj,< amin. Taking
the derivative of EQ.(A2) with respect toQ), with «
= amin, We easily see thak,, is a monotonically decreas-
ing function of(). Analogously, introducingr= amin in Eq.

(A4)

aip=

Q, from Eq(A3) we havea,;,;>1, and, since,(0)=Q and
€(1)=Q/k—1/2, the absolute minimum correspondsato
=1; however, as() grows, €,(1) increases faster than
€+(0), anday, will reach the physical region, since it de-
creases. The following three possibilities define three critical
values of(}.

(i) The relative minimume,,;, reaches the physical re-
gion. The critical valug}, is given by ap,i({21)=1. From
Eq. (A2), we obtainQ;=x?/(1—«).

(i) The relative minimumg,,;, ceases to be the absolute
minimum. This happens forQ=Q,, when e(amin)
=€e(0). Wehave the two equations

01—k
1 amn(1- )12’

The solution is Q,=1[8(1—«)?], and am,=1[2(1
—«)].

(iii) The value ofe,; at «=0 surpasses that at= 1. This
happens whef)=Q3, having e,(0)=¢€(1). Clearly, Q5
=kl[2(1—K)].

The ground state behavior depends on the ordering of
these criticak)’s, which in turn depends or. For k<3 we
have();<Q,,Q3. The ground state is then characterized by
complete collapse €<}, with all the particles inside the
core. ForQ); <0<, there is an incomplete, with most —
but not all — of the particle in the core. The value of
varies continuously fromw=1 atQ; to a=1[2(1—«)] at
Q,. For O>Q, the ground state has an empty core (
=0). Notice the jump ofx at Q.

For k>3 we have();<; andQ3;<(,. In this case, the
ground state fof) <15 is characterized by a complete col-
lapse, with all the particles inside the core. Ko 5 no
collapse happensy=0).

zzl—amin 2

2
Q2 ®Xmin
Xmin .
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