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Effect of angular momentum conservation in the phase transitions of collapsing systems

Victor Laliena
Hahn-Meitner Institut, Glienickerstrasse 100, D-14109 Berlin, Germany

~Received 2 July 1998!

The effect of angular momentum conservation within microcanonical thermodynamics is considered. This is
relevant in self-gravitating systems, where angular momentum is conserved and the collapsing nature of the
forces makes the microcanonical ensemble the proper statistical description of the physical processes. The
microcanonical distribution function with nonvanishing angular momentum is obtained as a function of the
coordinates of the particles. As an example, a simple model, introduced by Thirring long ago@Z. Phys.235,
339~1970!#, is worked out. The phase diagram contains three phases: For low values of the angular momentum
L the system behaves as the original model, showing a complete collapse at low energies and a convex intruder
in the entropy. For intermediate values ofL the collapse at low energies is not complete, and the entropy still
has a convex intruder. For largeL there is neither collapse nor anomalies in the thermodynamical quantities. A
short discussion of the extension of these results to more realistic situations is given.
@S1063-651X~99!08103-9#

PACS number~s!: 05.20.2y, 05.90.1m, 05.70.Fh
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I. INTRODUCTION

Conventional thermodynamics applies to systems wh
forces have saturation property, i.e., the minimum of the
tential energy of large systems is proportional to the num
of particles. If this is the case, macroscopic parts have n
ligible interactions and then the macroscopically conser
quantities are extensive, the thermodynamic potentials
homogeneous functions of these quantities, and large
tems can be studied in the thermodynamical limit. The
properties hold if the so called stability condition is verifie
For a system ofN classical particles interacting via a tw
body potentialf(r ) the stability condition states that the
must exist a positive constantE0 such that, for each configu
ration $r1 , . . . ,rN%, the following inequality is obeyed@1#:

F~r1 , . . . ,rN!5 1
2 (

iÞ j
f~ ur i2r j u!>2NE0 . ~1!

This condition is realized in very specific situations. For
stance, Eq.~1! holds for potentials repulsive enough at sh
distances, and decaying faster than 1/r D at long distances (D
is the dimensionality of the space!. The Lennard-Jones po
tential is an example. Systems with purely attractive pot
tials are always unstable, even if the forces are short ran
such as those studied in Refs.@2,3#. Owing to the long range
of the potential, self-gravitating systems are unstable, eve
the short distance singularity is removed by considering p
ticles endowed with a hard core. When the stability condit
does not hold, the system undergoes a phase transition
a high energy homogeneous phase~HP! to a collapsing phase
~CP! at low energies@4–8#. Recently, it has been discovere
@7,8# that there is a dynamical characterization of the t
phases: the single-particle motion is superdiffusive in the
and ballistic in the HP. The low energy regime is not
proper thermodynamical phase, since it is not homogene
Nevertheless, we shall use the term ‘‘collapsing phas
throughout this paper.
PRE 591063-651X/99/59~5!/4786~9!/$15.00
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It is well known that, as a consequence of the virial the
rem, self-gravitating systems have a negative specific h
@9,10#. In fact, the common feature of all these syste
seems to be the appearance of an interval of energies w
the microcanonical specific heat is negative@4,5,7#. This is
the transition region between the HP and CP.

A negative specific heat may also be observed in syst
with a finite number of degrees of freedom~see Ref.@11#!,
but, for stable systems, van Hove’s theorem@12# states that,
in the thermodynamical limit, the entropy at fixed volume
a concave function of the energy. As a consequence,
specific heat cannot be negative. However, the thermo
namical limit does not exist for unstable systems, and v
Hove’s theorem does not apply. Indeed, as mentioned ab
it has been observed that the microcanonical specific h
remains negative in an energy interval after increasing
number of particles@4–8#. Since the canonical specific he
is always positive, both ensembles cannot be equivalen
has been argued that the statistical formalism appropriate
astrophysical systems is given by the microcanonical
semble@9#.

Microcanonical thermodynamics has been recognized
especially useful for a statistical description of syste
which suffer fragmentation and clustering@11#, since there
seems to be a problem in describing spatial inhomogene
within the canonical ensemble. These phenomena, fragm
tation and clustering, appear in many different branches
physics, from nuclear physics@13# and atomic clusters@14#
to astrophysics@15#. The task of microcanonical thermody
namics is to compute the entropy of a given system a
function of the macroscopically~additive! conserved quanti-
ties. It is intuitively clear that the entropy of a system whi
undergoes a phase transition associated with spatial inho
geneities, like clustering or collapsing, will depend crucia
on the value of the total angular momentum.~See Ref.@16#
for a similar discussion in a different context.! Indeed, angu-
lar momentum induces a repulsive centrifugal pseudopo
tial, which competes with the attractive potential, and wh
is able to modify the transition from the HP to the CP. A
gular momentum is of particular importance in astrophysi
4786 ©1999 The American Physical Society
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the formation of a single star or a binary system, the birth
a solar system around a star, or the merger of galaxie
clusters are, to a large extent, determined by the value o
angular momentum.

A system of classical gravitating particles interacting v
the Newton potential has an infinite entropy, due to the s
gularities at both short and long distances@9#. It is clear that
the short distance singularity is not physical, since n
physics—like quantum mechanics—appears at small sca
hence there should exist a natural short distance cutoff.
long distance singularity has a different nature. In princip
one is tempted to say that gravity should be able to bind
system. A little thought, however, easily convinces one th
at least from a statistical point of view, the system ‘‘prefer
to evaporate rather than to remain bound. A box~the long
distance cutoff! is necessary to keep the system confined,
no such box appears in nature. We have to consider it a
artifact, making a statistical description possible. This is o
sensible if the evaporation rate is small. The box bre
translational invariance, and therefore linear momentum
not conserved. Since we are interested in keeping the ang
momentum conserved, we must deal with spherical boxe
order to maintain the rotational symmetry exactly.

The paper is organized as follows: in Sec. II we comp
the microcanonical distribution with conserved angular m
mentum by integrating out the momenta in phase space.
resulting formula yields a microcanonical weight suitable
Monte Carlo simulations, and also allows an analytical
proach based on mean field methods. In Sec. III we bri
derive the equations for the mean field approach. Section
is devoted to a discussion of a simple model, introduced
Thirring @4#, which mimics the main features of sel
gravitating systems fairly well. The model is extended
take into account the conservation of angular moment
The paper ends with a summary of the conclusions in Sec
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II. MICROCANONICAL DISTRIBUTION

Consider a system ofN classical particles whose interac
tions are given by some potential energyF, depending only
on the position of the particles. The Hamiltonian reads

H5(
i 51

N pi
2

2mi
1F~r1 , . . . ,rN!. ~2!

If the system is isolated, and the potential energy is tran
tionally and rotationally invariant, the energy, momentu
and angular momentum will be conserved. As a consiste
condition, the center of mass will move with a constant v
locity. Without loss of generality, we can take the total line
momentum to be zero, and then the center of mass is fi
for instance, at the origin of the coordinates. Assuming so
kind of ergodicity, the statistical distribution will be flat o
the available phase space shell. The entropyS is defined
through the Boltzmann formula

S~E,L,N!5 ln W~E,L,N!, ~3!

whereE is the total energy andL the magnitude of the an
gular momentum. By symmetry, the entropy must be in
pendent of theL direction. W is the volume of the phase
space shell defined by the orbits with givenE andL. Notice
that the Boltzmann constant is set equal to unity and
entropy is dimensionless; hence the temperature is meas
in units of energy.

To avoid overly cumbersome expressions, let us cons
the case in which only the angular momentum is conserv
If the linear momentum is also conserved, the derivation
the microcanonical distribution is similar, and the result w
be reported at the end of this section. The volume of
relevant phase space shell can be computed starting from
definition:
ration
W~E,L,N!5
1

N! E S )
i 51

N
d3r id

3pi

2p\ D d~E2H!d~3!S L2(
i

r i3pi D . ~4!

After integrating out thep’s, we obtain a nonsingular microcanonical distribution depending only on the spatial configu
$r1 , . . . ,rN%. In order to perform the integration overp in Eq. ~4! easily, let us define

P~Ē,L,N,$r%!5E )
i 51

N

d3pidS Ē2(
i

pi
2

2mi
D d ~3!S L2(

i
r i3pi D , ~5!

where we have used the notationĒ5E2F(r1 , . . . ,rN). It is convenient to take the Laplace transform ofP respect toĒ,

P̃~s,L,N,$r%!5E
0

`

dĒ e2sĒP~Ē,L,N,$r%!, ~6!

where Res.0. Introducing the following representation for the remaining Diracd function,

d~x!5E
2`

` dv

2p
eivx, ~7!

we obtain
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P̃~s,L,N,$r%!5E d3v

~2p!3
exp~ i v•L!E )

i 51

N

d3piexpS 2s(
i

pi
2

2mi
2 i(

i
v•~r i3pi ! D . ~8!

The integral overp is now Gaussian, and can be readily performed. What remains is again a Gaussian integral ovev; as
before, there is no difficulty in evaluating it. After some algebra, it is found that

P̃~s,L,N,$r%!5C~detI !21/2
e2s 1/2 LTI 21L

s~3N23!/2
, ~9!

whereLTI 21L5(ab51
3 La I ab

21 Lb , the matrixI is the moment of inertia tensor respect to the origin,

I ab5(
i 51

N

mi~r i
2dab2r i

ar i
b!, ~10!

a,b51,2,3 label the coordinates, andC5(2p)(3N23)/2) imi
3/2 is a constant.

The inverse Laplace transform of Eq.~9! can be found in any book of integral transform tables@17#. It is

e2sb

sn
——→ H 0 if 0 ,Ē,b

1

G~n!
~Ē2b!n21 if Ē.b.

~11!

Therefore,

P~Ē,L,N,$r%!5
C

GS 3N23

2 D ~detI !21/2~Ē2 1
2 LTI 21L !~3N25!/2 ~12!

if Ē. 1
2 LTI 21L, and it vanishes otherwise.

After integrating out thep’s, the volume of the phase space is given by

W~E,L,N!5C̃E S )
i 51

N
d3r i

2p\ D 1

AdetI
~E2 1

2 LTI 21L2F!~3N25!/2, ~13!
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whereC̃5C/@N!G((3N23)/2)#. The domain of integration
in Eq. ~13! is restricted to the subset of the configurati
space where the integrand is positive. The thermodynam
quantities can be computed numerically from the above
tegral by using a suitable Monte Carlo algorithm. Equat
~13! can also be used to derive microcanonical equation
mean field approximations.

If the linear momentum is also conserved, a similar e
pression holds. Only the exponent in Eq.~13! must be re-
placed by (3N28)/2, the constantC by

C5~2p!~3N26!/2S (
i

mi D 23/2

)
i

mi
3/2, ~14!

and the argument of theG function appearing inC̃ by (3N
26)/2. In this case, the moment of inertia tensorI refers to
the center of mass, which can be taken at the origin, and
al
-

n
in

-

en

Eq. ~10! holds. A Diracd function d (3)((mir i) must be in-
serted into Eq.~13! in order to keep the center of mass fixe
Notice that, if the number of particles is large, momentu
conservation gives negligible differences.

If the particles have some internal spin, the intrinsic m
ment of inertia of each particle must be added to the orb
moment of inertia, and the exponent on the right-hand sid
Eq. ~13! must be properly modified to take into account t
number of intrinsic degrees of freedom. The derivation o
microcanonical weight for these more general cases is id
tical to that outlined in this section, and presents no ad
tional difficulty. As a last remark, we stress that the results
this section, namely, Eq.~13!, apply to stable as well as to
unstable systems.

III. MEAN FIELD THEORY

If the number of particlesN is very large, one can expec
that the force a particle undergoes will be more sensitive
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the mean particle distribution than to the fluctuations arou
it. Then one might think that the thermodynamics depe
on the mean particle density alone. In this section, we s
give a derivation of the mean field equations using this
pothesis~cf. Ref. @18#!. For reasons which will become clea
in the following, the results of this section apply only
unstable systems.

Let us start with Eq.~13!. To perform the integral overr i
a
w
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for any i, we divide the integration region inL cells of
volume a3. The integral overd3r i becomes a sum over a
possible cells. We haveN such sums, one for eachi. For
each configuration$r% we can define a functionn( l ), with
l 51, . . . ,L, which counts the number of particles in thel th
cell. It is not difficult to see that the initial sum over th
position of the particles can be reorganized as a sum ove
number of particles inside each cell, as follows:
W~E,L,N!5A (
n~1!50

N

. . . (
n~L!50

N

dS (
l 51

L

n~ l !2ND N!

)
l 851

L

n~ l 8!!

1

AdetI
~E2 1

2 LTI 21L2F!~3N25!/2, ~15!

where A is a constant which containsC̃, the elementary phase space volume 2p\, and the volume of the cella3. The
combinatorial factor is the number of configurations of particle positions which give the same occupation distribution$n( l )%.
Introducing the particle densityr(r l)5n( l )/(Na3), wherer l denotes the position of the center of thel th cell, we can write Eq.
~15! as the following functional integral:

W~E,L,N!5E @dr#dS E d3r r~r!21DexpHNF2E d3r r~r!@ ln r~r!21#1 3
2 ln~E2 1

2 LTI 21L2F!G J , ~16!
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where we have ignored some irrelevant constants and
proximated the factorials by their asymptotic form, since
considerN large. We have also neglected the factorAdetI ,
which is of order 1/N with respect to the leading term. Now
we have to clarify how the argument of the logarithm sca
with N. The usual thermodynamical limit is reached by ta
ing N→`, keepingN/V,E/N, and L/N constant. The en-
tropy per particle thus has a well defined limit, if the pote
tial is stable. However, this limit does not exist for syste
whose dynamics are governed by unstable potentials. Ne
theless, in these cases we can still takeN→`, by letting the
masses and the coupling constants in the potential en
simultaneously go to zero in such a way thatNm5M and
N2f(r,r8) are kept constant. The energyE, the volumeV,
and the angular momentumL are not scaled. The thermody
namical functions depend on the total energy, instead o
the energy per particle. However, as can be seen from
~16!, the entropy scales withN. This scaling, which applies
naturally to unstable systems, is the one we will conside
this paper. This is not a thermodynamical limit, but a co
tinuous limit. It is sometimes called the Vlasov limit in th
literature~see for instance@19#!.

The functions I and F in Eq. ~16! depend onr(r l)
through a suitable discretization. For very largeN and very
small a, they can be expressed as

I ab@r#5ME d3r r~r!~r 2dab2r ar b!,

F@r#5E d3r d3r 8f~r,r8!r~r!r~r8!. ~17!

The functional integral~16! is defined by the previous dis
cretization. There are two limits to be considered in Eq.~16!:
p-
e

s
-

-
s
er-

gy

n
q.

n
-

a→0 and N→`. This is the rigorous order of the limits
since the discretization must be removed first in order
obtain the originalW(E,L,N). Afterwards, the number o
particles can be set to infinity with the above prescription
the scaling. For unstable systems, mean field theory con
of interchanging both limits, first takingN→`. In this case,
the functional integral~16! is dominated by the maximum o
the exponent of the integrand. All the fluctuations around
maximizing density are suppressed by powers of 1/N. There-
fore, all correlations are neglected and the mean field res
are recovered. These are exact if theN anda limits commute.
This offers an explanation for the well known fact that t
physics of many systems with long range interactions is
actly described by mean field theory. For stable systems,
scaling in the thermodynamical limit is different, and th
above arguments do not apply. Ignoring all the irreleva
constants, the entropy per particle can be defined as

S52E d3r r~r!@ ln r~r!21#1 3
2 ln~E2 1

2 LTI 21L2F!,

~18!

whereI andF are given by Eq.~17!. The equilibrium den-
sity r is that which maximizesS under the constrain
*r(r)51.

The particle density which maximizes Eq.~18! must have
a principal axis of the moment of inertia tensor along t
angular momentum direction. Otherwise, it would be po
sible to define a new density by rotating the given one,
such a way that the principal axis with larger moment
inertia coincided with the angular momentum direction. T
potential energyF and the pure entropical term*r(ln r
21) would not change, but the rotational energy would
lowered, thus increasingS. Taking the angular momentum
along thez axis, we can write
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S52E d3r r~r!@ ln r~r!21#1 3
2 lnS E2

L2

2I 33
2F D .

~19!

The constrained maximum can be obtained from the fu
tional derivative with respect tor. This gives the integra
equation

r~r!5expH 3

2
bFj~x21y2!2E d3r 8 f~r,r8! r~r8!G1mJ ,

~20!

where m is the Lagrange multiplier for the constraint*r
51, and we have used the notation

b5S E2
L2

2I 33
2F D 21

and j5
ML2

2I 33
2

. ~21!

IV. THIRRING MODEL WITH ANGULAR MOMENTUM

Long ago, Thirring proposed a very simple model for
star@4#. In spite of its extreme simplicity, it mimics the mai
features of self-gravitating systems with surprisingly go
success.~About the relevance of the Thirring model in astr
physics, and its comparison with more realistic models,
@9# and references therein.! Thirring considered the mode
without angular momentum. In this section, we shall see t
as expected, angular momentum substantially changes
behavior of the system.

A. Model

The model can be described as follows: a set ofN par-
ticles is confined to a spherical volumeV. Inside this volume
there is a spherical interaction region~core! V0 , concentric
with V. Particles outside the core~‘‘atmosphere’’! do not
interact, and two particles inside the core have a cons
attractive potential energy. Using the step function

QV0
~r!5H 1 if rPV0

0 if r¹V0 ,
~22!

the interaction energy can be written as

f~r,r8!52
Gm2

2
QV0

~r!QV0
~r8!, ~23!

wherem is the mass of a particle andG the ‘‘gravitational’’
constant.~We have chosen the coupling constant in analo
with a self-gravitating system.! We can carry out theN→`
limit of Sec. III, with Nm5M fixed. Then the potential
energy becomes

F~r1 , . . . ,rN!52
GM2

2
a2, ~24!

wherea5*V0
d3r r(r) is the fraction of particles insideV0 .

B. Mean field equations

To simplify the computations, we shall consider t
model in two dimensions.~It should not be difficult to solve
-

e

t,
the

nt

y

it in three dimensions, but it is slightly more cumbersom
and no qualitative difference is expected.! In this case, the
factor 3

2 which appears in front ofb in Eq. ~20! must be
replaced by 1. Let us introduce the following notation:R and
R0 , respectively, are the radii of the total volumeV and the
core V0 , and k5V0 /V. Using the dimensionless variable
e5E/(GM2) andV5L2/(2GM3R2), the mean field equa
tion ~20! becomes

r~r!5H exp$m1ba1bjr 2/R2% if r ,R0

exp$m1bjr 2/R2% if r .R0 ,
~25!

where

b5S e2
V

1

R2E d2r r 2 r~r!

1
a2

2 D 21

,

j5
V

F 1

R2E d2r r 2 r~r! G 2 . ~26!

The two self-consistency equations

a5E
V0

d2r r~r!, 12a5E
V\V0

d2r r~r! ~27!

determinea andm. From them, it is straightforward to de
rive the following equation fora:

ln a2 ln~12a!2ba52bj~12k!1 lnS 12e2bjk

12e2bj~12k!D .

~28!

Notice thatb is positive by definition. It is possible to elimi
natem from ~25!, so that the particle distribution becomes

r~r!55
aF0

V
expS 2bj

r 2

R2D if rPV0

~12a!F1

V
expS 2bj

r 2

R2D if r¹V0 ,

~29!

where

F05
bj

ebjk21
and F15

bj

ebj2ebjk
. ~30!

Equation~28! provides the complete solution for the syste
Once we obtaina, for different values of the energye and
the angular momentumV, we can compute the entropyS
and the temperatureT. Owing to the fact that the mass dis
tribution maximizesS, we have

1

T
5

]S@r,e#

]e
5b. ~31!

Notice thata is an order parameter for the collapsing pha
transition, since it is the fraction of particles inside the co
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FIG. 1. The structure of the ground state as a function ofV for ~a! k,
1
2 ~observe the logarithmic scale in abscissas! and ~b! k.
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V0 . Notice also that Eq.~28! can have more than one solu
tion for some values ofe andV. When this is the case, th
true solution is that which maximizes the entropy. The oth
constitute metastable states@20#.

C. Limiting cases

Let us study the solutions of Eq.~28! in some limiting
cases.

~a! If V→0, then j→0, and we recover the origina
Thirring model. There is a phase transition separating a
energy CP, wherea;1, from a high energy HP, witha
;k.

~b! If V→`, thenj→`. In this casea→0 for e;4V
anda→k for e@4V. No collapse happens.

~c! For fixed values ofV ande→`, we haveb→0, and
thena→k. In the high energy region, the system behaves
a gas, irrespective of the angular momentum, and the m
distribution is homogeneous.

~d! The most interesting case is the behavior of the gro
state for fixed values ofV. The ground state is the macro
scopic state described by the microstates on the phase s
shell with minimal energy for fixed angular momentum.
corresponds to zero temperature, since the energy of the
tem is saturated by the rotational energy~which cannot be
zero due to the angular momentum! and the potential energ
in such a way that no energy remains for thermal moti
This clearly impliesb→`. As can easily be seen, the e
tropy goes to2` as2 ln b; hence, at zero temperature, th
nonthermal~rotational plus potential! energy must be at its
minimum. Otherwise, the system can change its mass di
bution in such a way that some amount of thermal ene
1/b appears, increasing the entropy. In Sec. IV D, we sh
see what the structure of the ground state is for differ
values ofV.

D. Ground state

As we have just discussed, whenb→`, the nonthermal
energy

ent5
V

1

R2E d2r r 2 r~r!

2
a2

2
~32!

must be at its minimum. It is possible to minimize the ro
tional energy without modifying the potential energy: f
s

w

s
ss

d

ace

ys-

.

ri-
y
ll
t

-

each fixeda, take a mass distribution which maximizes th
moment of inertia. Obviously, this mass distribution corr
sponds to a fractiona of the particles in the outer layer of th
core and the remaining 12a fraction in the outer layer of the
system. The dimensionless moment of inertia is th
(1/R2)*d2r r 2 r(r)512a(12k); hence the nonthermal en
ergy is

ent5
V

12a~12k!
2

a2

2
. ~33!

The absolute minimum of the above function foraP@0,1#
gives the equilibrium particle distribution in the ground sta
as a function ofV and the parameterk. Details are found in
the Appendix, where it is shown that the behavior of t
ground state depends onk in the following way.

~a! k, 1
2 ~atmosphere larger than the core!. There are two

critical values of the angular momentum:V15k2/(12k)
andV251/@8(12k)2#. ForV,V1 the ground state is char
acterized by a complete collapse with all the particles ins
the core (a51). For V1,V,V2 there is an incomplete
collapse with most, but not all, the particles in the core. T
fraction of particles inside the core varies continuously fro
a51 at V1 to a51/@2(12k)# at V2 . For V.V2 the
ground state has an empty core (a50). Notice the jump of
a at V2 .

~b! k. 1
2 ~atmosphere smaller than the core!. There is one

critical value of the angular momentum,V35k/@2(1
2k)#. The ground state forV,V3 is characterized by a
complete collapse with all the particles inside the core. F
V.V3 no collapse happens (a50).

Figure 1 displays the behavior of the ground state a
function of V for the casesk,1/2 andk. 1

2 .

E. Phase diagram

For the discussion of the model at finite temperatures,
consider the most interesting case,k,1/2 ~atmosphere large
than the core!. The numerical solutions displayed in the fig
ures are for k51/(e321)'0.0524. Exactly as for the
ground state, there are three different phases, which ca
distinguished by the behavior of the order parametera. Fig-
ure 2 displaysa as a function of energy for three values ofV
corresponding to each phase. Figures 3 and 4 show the
perature and the entropy for the same values ofV. The cor-
relation between the collapsing transition and the anoma
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in the thermodynamical quantities is clearly seen. We n
discuss in detail what is happening in each phase.

~1! V,V1 . There is a complete collapse at low energi
with a'1. The HP is separated from the CP by an inter
of energies with negative specific heat. Qualitatively,
model is similar to the original (V50) Thirring model. The
entropy shows the characteristic convex intruder in the
ergy interval where the two phases coexist.~Notice that,
since the system is not thermodynamically stable, v
Hove’s theorem@12# does not apply!.

~2! V1,V,V2 . At low energies the collapse is not com
plete, with a,1. For values ofV near V1 the thermody-
namical quantities are qualitatively equal to those in the l
angular momentum phase~negative specific heat!. WhenV
is larger, Eq.~28! has more than one solution in some ener
interval. The solutions form three continuous branches.
stable state is determined by the solution with the larg
entropy. The other solutions are metastable states@20#. There

FIG. 2. The collapsing order parametera vs the energy forV
values corresponding to each of the three phases. To facilitate
parisons, we have shifted the energy such that the minimum en
is e50 for all V.

FIG. 3. The microcanonical temperature vs the energy for th
values ofV, corresponding to each phase of the system.
w

,
l

e

-

n

y
e
st

is a crossover at a certain energy: the stable solution mo
from one branch to another. This is the origin of the jumps
a and in T that can be seen in Figs. 2 and 3 (V50.05 in
these plots!. Notice that the jump occurs after a region wi
negative specific heat. For largerV, the jump appears befor
the specific heat becomes negative; however, even thoug
the last cases the specific heat is positive everywhere,
entropy has still a convex intruder, due to the kink originat
by the jump in the temperature.

~3! V.V2 . There is no collapse at low energies. T
specific heat is positive, smooth, and increases monot
cally with the energy. The entropy has no convex intrude

The above discussion demonstrates the correlation
tween the collapsing phase transition and the anomalie
the caloric curve (T versuse), and in the entropy. The phas
diagram in the plane (e,V) is displayed in Fig. 5. Obviously
there is a forbidden region, since a minimal rotational ene
is required to keep angular momentum constant. The bou

m-
gy

e

FIG. 4. The entropy vs the energy for three values ofV, corre-
sponding to each phase of the system. The convex intruder for
two smallerV can be seen. ForV50.15 the entropy is concave.

FIG. 5. The phase diagram of the model. Notice the logarithm
scale in the ordinate axis. The thick line corresponds to theT50
isotherm.
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ary between the forbidden and allowed regions is theT50
isotherm. Inside the allowed region, there are two pha
separated by a transition region, which is defined through
Maxwell construction.~The two CP’s,V,V1 and V1,V
,V2 , are distinguished only by the behavior of the ord
parameter at low energies. The thermodynamical quanti
however, behave in a similar way in both cases. Theref
we do not distinguish the two low energy regimes in t
phase diagram.! Since both phases are qualitatively differe
they must be analytically separated. This means that the t
sition must end at zero temperature~i.e., on the curve of
minimal energy!. The transition region shrinks asV in-
creases, and disappears atVc5V2 on the zero temperatur
line.

For fixed V, the difference of the energies limiting th
transition region defines a ‘‘latent heat.’’ We see that t
phase transition is first order everywhere, with non-vanish
latent heat. From the analysis of Eq.~28! when b→` and
V→V2 , one concludes that the latent heat vanishes asV2
2V. A careful study of the possible solutions, their entr
pies, etc., which is not reported here in detail, leads to
conclusion. Therefore, at the critical pointV2 , the latent
heat disappears. Since the specific heat is continuous a
point, we cannot say that the phase transition becomes
ond order; indeed, the order parametera jumps atV2 .

F. Discussion

We now want to address the question of whether
phase diagram described in Sec. IV E shares its main p
erties with those of more realistic models, or whether th
are merely a consequence of the extreme simplicity of
model. We can give at least a partial answer. The mo
considered here is unrealistic mainly because of the fact
the particles can only collapse in a fixed region. Therefo
there is no place for more complicated regimes like mu
fragmentation.

At low angular momentum, the CP, with all —or most—
of the particles forming a cluster, will be present in realis
problems. Of course, the size of the cluster will increase w
angular momentum, because of the centrifugal pseudopo
tial. For large energies, both the potential and rotational
ergy are negligible and we shall have a HP. There will th
be a transition region separating the two phases, as in Fi
However, in realistic cases, we do not expect the CP to
appear for large angular momentum. Instead, a CP ph
with two or more clusters will appear. This is intuitivel
clear, since the ground state will contain one cluster for l
angular momentum and two clusters if the system rota
faster. This property of the ground state with non-vanish
angular momentum can easily be verified in the Her
Thirring model@5#, which is a generalization of the Thirrin
model that allows the particles to condense in different ce
The center of mass of the system must be held fixed, as is
case in isolated systems with negligible effects of the w
~self-gravitating systems, for instance!. The size of the low
energy region, where the CP appears, will shrink if angu
momentum increases, and will certainly become zero w
the system rotates infinitely fast. We expect a richer ph
diagram, possibly with successive collapsing transitions,
into two ~or more! clusters and afterwards into a single on
es
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More complicated regimes, like multifragmentation, cou
also be present as metastable@20#, or perhaps truly stable
states.

V. CONCLUSIONS

Let us briefly summarize the results presented in t
work. First, we found a nonsingular expression for the m
crocanonical distribution of systems with conserved, non
nishing angular momentum. It was obtained by integrat
out the momenta in phase space, and it is suitable for Mo
Carlo simulations as well as for mean field computatio
We presented a derivation of the mean field equations
systems of classical particles interacting via a two body
stable potential, taking into account angular momentum c
servation.

As an example, we discussed the properties of the ph
diagram of a simple model of self-gravitating particles, i
cluding conservation of angular momentum. We found
exact solution in the mean field approach, which served
illustrate how the phase diagram of a physical system can
modified by the conservation of angular momentum. In t
simple model, the angular momentumL}AV leads to the
existence of three phases, separated by two critical valuesV1
and V2 . At low energies, all particles condense in a sm
region if V,V1 . For V1,V,V2 , the collapse at low en-
ergy is incomplete, with most —but not all— particles co
densed in a small region. At high energies, the system
haves like a gas, irrespective of the value ofV. The
transition from the HP to the CP is accompanied by
anomaly in the caloric curve (T versuse), which reflects the
fact that the entropy is not concave in an energy interv
This interval coincides with that where the homogeneo
collapse transition takes place. Through the Maxwell co
struction, it is possible to define this transition region and
latent heat, which shows that the transition can be classi
as first order. The latent heat disappears continuously aV
5V2 andT50. This reflects the fact that both phases, be
qualitatively different, cannot be analytically connected
the phase diagram. AtV.V2 there is neither collapse no
anomaly in the thermodynamical quantities. The fact that
anomalies of the thermodynamical quantities disappea
large angular momentum, when the collapse disappears
ambiguously supports the close link between these two p
nomena: collapse and thermodynamical anomalies.

We argued that, with more realistic potentials, the ph
diagram will likely be richer. In particular, the CP will b
present for large angular momentum, the collapse tak
place into two clusters. There remain many open questio
for instance: do several transitions appear, with the sys
successively collapsing first into two or more clusters a
subsequently into a single one? Is there any room for mu
fragmentation regimes, either as metastable or perhap
stable states? It is the opinion of the author that all of th
questions deserve an answer through extensive studies.
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APPENDIX

In this appendix we study in detail the minima of th
nonthermal energy~see Sec. IV D!

ent5
V

12a~12k!
2

a2

2
. ~A1!

The absolute minimum of the above function in@0,1# is ei-
ther ata50,a51, or at one solution of

V~12k!

@12a~12k!#2
2a50. ~A2!

Equation~A2! is equivalent to a real polynomial equation
third degree, and therefore has either one or three real s
tions. Since the first term in Eq.~A2! has a pole ata
51/(12k).1, there is always a solution ata.1/(12k),
which is nonphysical sincea must belong to@0,1#. Besides
this nonphysical solution, Eq.~A2! has two more solutions
whenV is small. ForV!1,

amax'V~12k!, amin'
1

12k
„12AV~12k!….

~A3!

From the second derivative of Eq.~A2!, we see that there is
an inflection point at

a ip5
12A3 V~12k!2

12k
, ~A4!

so thatamax corresponds to a local maximum, andamin to a
local minimum. We always haveamax<a ip<amin . Taking
the derivative of Eq.~A2! with respect toV, with a
5amin , we easily see thatamin is a monotonically decreas
ing function ofV. Analogously, introducinga5amin in Eq.
ng
s,

-

e

lu-

~A1!, taking the derivative respect toV and using Eq.~A2!,
we see that the value ofent at its local minimumamin is a
monotonically increasing function ofV.

Let us study the absolute minimum of Eq.~A1! for 0
<a<1. The three candidates area50,1, oramin . For small
V, from Eq~A3! we haveamin.1, and, sinceent(0)5V and
ent(1)5V/k21/2, the absolute minimum corresponds toa
51; however, asV grows, ent(1) increases faster tha
ent(0), andamin will reach the physical region, since it de
creases. The following three possibilities define three criti
values ofV.

~i! The relative minimumamin reaches the physical re
gion. The critical valueV1 is given byamin(V1)51. From
Eq. ~A2!, we obtainV15k2/(12k).

~ii ! The relative minimumamin ceases to be the absolu
minimum. This happens forV5V2 , when ent(amin)
5ent(0). Wehave the two equations

amin5
V2~12k!

@12amin~12k!#2
, V25

V2

12amin
2

amin
2

2
.

The solution is V251/@8(12k)2#, and amin51/@2(1
2k)#.

~iii ! The value ofent at a50 surpasses that ata51. This
happens whenV5V3 , having ent(0)5ent(1). Clearly, V3
5k/@2(12k)#.

The ground state behavior depends on the ordering
these criticalV ’s, which in turn depends onk. For k, 1

2 we
haveV1,V2 ,V3 . The ground state is then characterized
complete collapse ifV,V1 , with all the particles inside the
core. ForV1,V,V2 there is an incomplete, with most —
but not all — of the particle in the core. The value ofa
varies continuously froma51 at V1 to a51/@2(12k)# at
V2 . For V.V2 the ground state has an empty corea
50). Notice the jump ofa at V2 .

For k. 1
2 we haveV3,V1 andV3,V2 . In this case, the

ground state forV,V3 is characterized by a complete co
lapse, with all the particles inside the core. ForV.V3 no
collapse happens (a50).
-
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